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AUV Positioning Using Bathymetry Matching
Richard R. Beckman, Andrew Martinez and Brian S. Bourgeois

Abstract

A current research concern in AUV positioning is the constraint of INS error growth; approaches to this include
surfacing for GPS fixes, terrain matching methods and acoustic transponder systems. This paper presents a positioning
technique for AUV’s that exploits existing bathymetric data in an operation area. Unlike many terrain matching
approaches, which do positioning using distinct ocean bottom features, this method generates a position estimate by
comparing the in-situ measured depth at the position of the AUV with available bathymetry data in the immediate
area. This builds on contemporary AUV INS/VL navigation systems by incorporating a maximum likelihood estimate
of position. Particular emphasis is placed on the design of the maximum likelihood estimator module which produces
point-wise position estimates and typically contains a large error component with many outliers. This estimate is
merged with the output of the AUV’s INS/VL system which constrains the INS drift. Further position accuracy and
faster convergence to the correct position can be achieved by incorporating a single slant range measurement from the
AUV to a fixed location. The slant range is used as external constraint on both the INS and the MLE. This paper
describes the implementation of this approach and the results of simulation studies.
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I. Introduction

ONE of the main problems facing the AUV community is the constraint of INS drift. The most
common solution to this problem uses acoustic positioning systems. Long baseline systems require

a series of transponders to be placed on the ocean floor and then the position of each determined. This
system allows for localization only inside a limited area. For a more flexible area, short or ultra-short
baseline acoustic positioning can be used. This requires a surface vessel to remain near the AUV at all
times. Due to operational costs, it is desirable to reduce the amount of external equipment required
for an AUV to operate independently.
Researchers have approached this problem differently. Lucido et al.[1], and Sistiaga et al.[2] match

high resolution local depth maps against a large, low resolution reference map. Feder et al.[3], [4] use
an on board multibeam sonar to map a region and use that map to navigate the area.
This paper presents a system that has been developed for use in areas where high resolution bathy-

metric data is available. External inputs required by the system are standard INS outputs, a single
slant range to a known point and ocean depth measured at the present location of the AUV. The
system is presented and results from computer simulations are shown.

II. Description of the System

This system consists of three modules: the terrain matching module, the state estimator, and the
slant range corrector. The state estimator produces a predicted position based on dead reckoning or
velocity input. This estimate is given to the terrain matching module which provides an updated
estimate of location using measured ocean depth and detailed bathymetry in the neighborhood of the
AUV. Given this updated estimate of position, the state estimator then updates the estimate of state.
The slant range corrector takes the range from a transponder to the AUV and forces the estimated
location to be that distance from the transponder. Each of these subsystems is described in detail
below.
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A. Terrain Match

The terrain matching module of the system takes an estimated location of the AUV and ocean depth
measured by the AUV at that position and uses a likelihood function to produce an updated location
for the AUV.
Assuming that a method (dead reckoning, inertial navigation, etc.) exists to provide an estimated

location of the AUV, a vector, α̂ = (x̂, ŷ, ẑ), can be formed consisting of the assumed position x̂, ŷ,
and the measured ocean depth value ẑ. The x̂ and ŷ are eastings and northings in meters and ẑ is the
depth in meters. Each of these values has an associated measurement error.
This module requires a reasonably dense bathymetric data set in the neighborhood of the AUV.

Each point in the bathymetric data set is a triple, αi = (xi, yi, zi).
Let α be the true location of the AUV, where α = (x, y, z). The measurement error, e, is defined

as the difference between the true and estimated positions, e = α − α̂.
Viewed as an estimation problem, a maximum likelihood approach can be taken. That is, given

observations from a distribution with unknown parameters the value of the observation that maximizes
the likelihood function is the best estimate of the parameters. The α̂ and α are related through the
likelihood function(LF) based on a known or assumed error distribution, fe. The LF can be expressed
as

L(α|α̂) = fe(α − α̂) (1)

Given the estimated position α̂ and the bathymetry in the area {αi} the most likely location of the
AUV can be determined as the αi which maximizes L(αi|α̂).
By further assuming that the errors between α̂ and αi are only due to measurement and estimation

errors, consistent with normal practice, the error e is assumed to be jointly Gaussian with zero mean
and covariance Σ. The Gaussian assumption is justified for the errors because they are likely to be
small and equally likely to be positive or negative.
The LF can then be expressed as:

L(αi|α̂) = |2πΣ|−1/2 exp
(−0.5(αi − α̂)TΣ−1(αi − α̂)

)
(2)

Maximizing this equation with respect to αi is readily shown to be equivalent to minimizing

λ(αi|α̂) = (αi − α̂)TΣ−1(αi − α̂) (3)

Because Σ is a covariance matrix, it is positive semidefinite, and the likelihood function in (3) is
strictly non-negative with minimum 0 at α = α̂. When evaluated over the bathymetric data set {αi},
(3) produces a measure which can be viewed as the distance squared from the estimated position.
It has been observed in simulation that there are significant differences in the variances of the error in

the along range versus cross range directions and little correlation between the error in these orthogonal
directions. This corresponds to elliptical symmetry in the quadratic form of (3), with the major axis
in the cross range direction and the minor axis along range. It is computationally advantageous to
rotate the coordinate system as this has the effect of diagonalizing Σ.
The position vectors αi − α̂ can be rotated so that the along range and cross range directions

referenced to the transponder’s location form the basis of the new coordinate system, with rotation
matrix

R =



cosφ − sinφ 0
sinφ cos φ 0
0 0 1


 (4)

In the new coordinate system, (3) can be rewritten as:

λ = (αi − α̂)TRTRΣ−1RTR(αi − α̂) (5)
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Defining βi as the rotated point R(αi− α̂) and RΣRT as C yields a new LF in which the C is strictly
diagonal due to the independence assumption in the new, rotated coordinate system. Rewriting (5) in
terms of the new variables arrives at the final form of the LF.

λ = βT
i Cβi (6)

The best estimate of the AUV’s location is then the αi that minimizes (6).

B. State Estimator

The nature of the terrain matching does not take the dynamics of the AUV into account. By
developing a state model for the system, these dynamics can be accounted for to improve the estimate
of the AUV’s position. The general approach taken is based on Kalman filter theory[5].
The problem is rotated into the same coordinate system that is used in the terrain matching module.

Due to the presence of the ranging unit described in the next section, the along range location of the
AUV can be measured to a high degree of accuracy. Therefore, the cross range dynamics are the only
ones modeled. These dynamics were assumed to obey standard Newtonian motion.

ẍ(t) =
−Fc

m
ẋ(t) +

1

m
u(t)

where Fc is the coefficient of friction, m the mass, x(t) the cross range position of the AUV, and u(t)
is the instantaneous force applied to the AUV. Transforming to discrete time and setting µ = FcT/m
yields the difference equation

xn+1 = xn + (1− µ)(xn − xn−1) +
T 2

m
un

Taking a Kalman-like approach, the position of the system at time n is updated (using dead reckoning)
to produce a prediction of the position at time n+ 1:

x̂−
n+1 = xn + (1− µ)(xn − xn−1)

This estimate of position is supplied to the MLE and compared with the output of the MLE, x̂n+1, to
produce the error or innovations sequence:

ηn+1 = x̂n+1 − x̂−
n+1

The innovations sequence is in turn used to update the estimate of position,

xn+1 = x̂−
n+1 + kηn+1

The two parameters µ and k affect the optimality and rate of convergence of the system and are
implementation specific.
The system can be made more stable by constraining the magnitude of the difference between two

consecutive estimates by the nonlinearity

xn+1 =




xn − ε xn+1 − xn < −ε
xn+1 |xn+1 − xn| ≤ ε

xn + ε xn+1 − xn > ε
(7)

With ε being a system dependent tolerance that varies depending on vessel dynamics and sampling
frequency.
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C. Slant Range Corrector

The state estimator provides a means to account for the cross range position of the AUV, but another
method is required to account for the along range location. By adding a transponder, the system can
find the slant range to the known point accurately. This information, when combined with the depth
of the AUV from on board sensors, allows the horizontal distance to be known accurately. However,
it does not provide a measurement of angle.
This information is used to adjust the AUV’s estimated position until the range is correct along

a line between the transponder’s location and the position estimate from the state estimator. As a
result, the range information from the transponder serves to correct the along range position and the
cross range position is taken from the state estimator.

III. Results

The results of the system simulations were excellent. The simulation studies demonstrate a relation-
ship between the nature of the terrain and the system performance. The terrains tested generally could
be classified as one of three types based on performance. The best terrains have prevailing contours
that are close together and run parallel to the track of the AUV. If the contours remain close, but they
are perpendicular to the direction of travel, performance is reduced. The worst performance occurs
over terrain where there are few to no variations in the measured bathymetry.
Track line plots and position error plots have been provided for each test. The track line plots each

contain three lines. The dotted line is the AUV’s assumed track which is the best estimate of the
AUV’s location before any corrections are applied. The dashed line is the real track of the AUV,
which was generated by the simulator. The solid line is the system’s estimated track for the AUV.
Startup transients are evident in each plot. Following is a plot of the error between the estimated and
the real tracks. This error is shown in three parts: total error, the cross range component of the error,
and the along range component of the error.

A. Performance over Different Terrains

The data set used in the simulations was collected in Pensacola bay and has an average horizontal
sampling density of one sample per meter and a depth resolution of 6.5 cm. Over a large number of
simulation runs over various terrains, the average RMS error in position estimated by this system was
0.9 meters. The actual RMS error of a given run is heavily dependent upon the terrain over which
this system is operating.
The best terrain condition is characterized by a rough bottom that tends to have contours that

extend parallel to the along range direction. A sample run over this terrain is shown in Figure 1.
The standard deviation of the bottom depth along the AUV’s track in this area was 3.3 meters.
Figure 2 provides a breakdown of the error for this condition. As Figure 2 shows, most of the error
is contained in the cross range estimation. This is expected because the ranging module provides an
excellent estimate of the along range location. The terrain match works well under these conditions
and provides the best cross range estimate of location. The range of RMS error values over this terrain
type is less than 0.55 meters.
The next best terrain for this system is a rough bottom where the along range direction runs

perpendicular to the contours. This condition penalizes the terrain match since the bottom does not
change significantly over the search area. A sample run under this condition is shown in Figure 3. The
standard deviation of the bottom depth along this track is 2.4 meters. The error plot is contained in
Figure 4. The RMS error values range from 0.5 meters to 0.8 meters for this terrain.
The worst case terrain is nearly flat with a standard deviation along the AUV’s track of 1.2 meters.

The RMS error range of the estimated position is 0.8 to 1.2 meters. A representative run is shown in
Figure 5, and the error is shown in Figure 6.
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The terrain match performance is directly related to the amount of variation in the bottom depth,
particularly in the cross range direction. This leads to the conclusion that cross range bottom roughness
and slope can be used to dynamically determine system performance.

B. Performance in Extreme Conditions

There are two known conditions where the system has difficulty performing. Compensating for and
identifying these conditions are subject to ongoing research.
One known adverse condition is when the AUV strays outside the coverage of the bathymetric data.

This prevents the terrain match module from being able to chose the correct location. The system
performs in an unpredictable manner in this situation. The system may swing out to the correct edge
of the data. In this case, when the AUV hits the edge it will hang at the edge until the AUV reenters
the area of bathymetric coverage. This case is detectable but there is no method to estimate where
the AUV really is. Another possible result is that the system will find a most likely, but false, path
within the bathymetric coverage area. This error is not detectable at present and it is not known if it
can be compensated for.
In some oceanscapes, two or more different tracks may exist which produce the same depth profile

as that measured by the AUV. In this case, the system follows the one closest to the current estimated
location. In some cases the correct path can be deduced in post-processing by reversing the sense of
time and running the AUV data through the algorithm backwards. If the results of running in both
directions yield the same result, then that is the most likely solution. While it is not always possible
to determine when a chosen path is incorrect, it is possible to determine when multiple paths exist by
setting the initial position estimate to different locations and letting the system locate the most likely
path while continuing to track the original path in parallel. If the new path does not converge to the
original, then multiple paths exist.

IV. Conclusions

This paper presents a new method to locate AUV’s that provides accuracies comparable to current
approaches with significantly less hardware. The approach uses ocean depth measured by the AUV,
slant range to a known transponder location and a high resolution bathymetric data set to produce an
estimate of AUV’s position with accuracy approaching the sampling density of the bathymetric data
set. The results have been shown to depend on the terrain over which the AUV is operating.
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Fig. 1. Best Operating Conditions
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Fig. 2. Error Plots for Best Operating Conditions
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Fig. 3. Mid case Operating Conditions
Solid Line – Estimated Course
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Fig. 4. Error Plots for Mid case Operating Conditions
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Fig. 5. Marginal Operating Conditions
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Fig. 6. Error Plots for Marginal Operating Conditions
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